CONFORMATIONAL PREFERENCE IN BENZYLOXY- AND SILOXY-SUBSTITUTED THIANES, THIANE 1-OXIDES, AND THIANE 1,1-DIOXIDES

Yoshimitsu Nagao^a*, Michimasa Goto^b, Kiyoshi Kida^a, and Motoo Shiro^c ^aFaculty of Pharmaceutical Sciences, The University of Tokushima, Sho-machi, Tokushima 770, Japan ^bChemical Instrument Center, Nagoya University, Chikusa, Nagoya 464-01, Japan

^cRigaku Corporation, 3-9-12, Matsubara-cho, Akishima, Tokyo 196, Japan

Abstract- Conformer ratios in 4-benzyloxy- and 4-siloxy-substituted thianes, *cis-* and *trans-*thiane 1-oxides, thiane 1,1-dioxides, and dihydrothiines were revealed on the basis of their low temperature ¹H nmr analyses Extreme benzyloxy- and siloxy-axial (or -pseudoaxial) conformer preferences in *trans*thiane 1-oxides, thiane 1,1-dioxides, and dihydrothiines were clearly demonstrated.

Previously, we reported axial (*ax*) conformer preferences (>70% at 25 °C) of alkoxy and siloxy groups in the chair-type cyclohexanones (1) and (2), glutaric anhydride ($3 \cdot X = O$), and glutarimide ($3 \cdot X = NCH_2Ph$) not

only in their CDCl₃ solution but also in the crystalline state.¹ These prochiral compounds (1) and (3) should be attractive to us from the viewpoint of a new design for the asymmetric induction.²

Significant attention was earlier directed toward the conformational analyses of substituted thianes and their 1oxides and 1,1-dioxides. Martin and Ubel reported a conformational preference for the forms having sulfoxide oxygen-ax over those with sulfoxide oxygen-equatorial (eq) in the cis- and trans-4-chloro-, 4-hydroxy-, or 4-ptoluenesulfonyloxythiane 1-oxides.³ \overline{O} ki and Nogami disclosed interesting evidence of a conformational preference for the forms having Br-eq in the 4-bromothiane and its cis-1-oxide and for the forms having Br-ax in the trans-4-bromothiane 1-oxide and its 1,1-dioxide.⁴ These results mentioned above prompted us to investigate the systematic conformational analyses of the titled compounds (4-7) and dihydrothiines (8).

Figure 1. Conformational equilibrium modes in 4-RO-substituted thianes, thiane 1-oxides, thiane 1,1-dioxides, and dihydrothiines

The low-temperature ¹H nmr spectra of 4-RO-substituted thianes (4a-d),⁵ *cis*-thiane 1-oxides (5a-c), ⁵ *trans*-thiane 1-oxides (6a-c),⁵ thiane 1,1-dioxides (7a-c),⁵ and 4-RO-dihydrothiine (8c)⁶ gave rise to two sets of 4-H

or 2-H peaks which correspond to the RO-eq and RO-ax conformers based on the result from their ring interconversion as shown in Figure 1 and Table 1.

Table I.	Conformer ratios in RO-substituted thianes (4a-d),
	cis-thiane 1-oxides (5a-c), trans-thiane 1-oxides (6a-c),
	thiane 1,1-dioxides (7a-c), and dihydrothune (8c) based
	on ¹ H nmr analysis (400 MHz, CD ₂ Cl ₂).

	Conformer Ratio ^{a)}	δ(ppm) of 4-H		
Compound	RO-eq : RO-ax	RO-eq	RO-ax	Tc ^{b)} /°C
4a	76:24	3.23	3.77	-60
4b	69 · 31 ^{c)}	3.46	4.09	-55
4c	47 : 53	3.42	4 03	-50
4d	89:11	3.37	4.02	-60
5a	55 [.] 45	3.45	3.71	-40
5b	34 : 66	3.65	3.97	-40
5c	33 : 67	3.60	3.89	-40
6 a	11:89	3.40	3.81	-50
6b	4 : 96	3.7 6	4.10	-50
6c	2:98	3.70	4.07	-50
7a	5:95	3 59	3.84	-60
7b	2:98	3.82	4.10	-70
7c	3:97	3.74	4.05	-60
8c	2:98 ^d	3 16 ^{e)}	3.57 ^{e)}	-75

a) Unless otherwise, determined at ~80 °C. b) Coalescence temp.

of 4-H peaks. c) Determined at -90 °C d) Determined at -95 °C.

e) δ (ppm) Value of 2-Hax.

¹H nmr (200 MHz, CDCI3, room temperature) bandwidths (W) of 4-H peaks of **4a-d** exhibited fairly large values (**4a**: 27.6 Hz, **4b**: 25.1 Hz, **4c**: 24.0 Hz, and **4d**: 29.0 Hz), which suggested their RO-*eq* conformer preferences.¹ Then, we examined their 400 MHz ¹H nmr analyses at -80 °C and could reveal the details of their conformational ratios (*eq* vs *ax*) in CD₂Cl₂ solution as shown in Table 1 Interestingly, the order of RO-*eq* conformer preferences among siloxy derivatives (**4b-d**) is shown to be **4d>4b>4c**. This order must be contrary to that of the bulky size of siloxy groups. Eventually, the order (**4d>4a>4b>4c** and **5a>5b>5c**) seemed to be in proportion to the basicity (electron density) of the oxygen atom of 4-RO groups. Hence, basicity order of the oxygen atom of the related benzyloxy and siloxy derivatives⁷ was tentatively determined on the basis of up-field shift ($\Delta\delta$ ppm) of ¹¹⁹Sn-peak of Me₂SnCl₂ in the presence of the corresponding cyclohexanol ether as shown in

Table 2. Interestingly, the basicity order (Me₃S₁-O>PhCH₂-O>*t*-Bu(Me)₂Si-O>*t*-Bu(Ph)₂Si-O) obtained by our method is perfectly consistent with the order of the RO-*eq* comformer preferences in the compounds (4) and (5).

Run ^{a)}	Conditions ^{a)}	Chemical Shift of ¹¹⁹ Sn (δ ppm) ^{b)}	Δδ ppm ^{c)}
1)	Me ₂ SnCl ₂ (0.3 mmol)/CDCl ₃ (2.5 ml)	143.42	_
2)	$Me_2SnCl_2 + OSi(Me)_3$	120.09	-23.33
3)	Me ₂ SnCl ₂ + OCH ₂ Ph	131.51	-11.91
4)	Me ₂ SnCl ₂ + OSi(Me) ₂ <i>t</i> -Bu	138.45	-4.97
5)	Me ₂ SnCl ₂ + OSi(Ph) ₂ t-Bu	142.92	-0.50

Table 2. Up-field shift ($\Delta\delta$ ppm) of ¹¹⁹Sn-peak (149 MHz, ¹¹⁹Sn nmr) of Me₂SnCl₂ in the presence of ethers in CDCl₃ at -50 °C.

a) In Runs 2-5, a mixture of Me_2SnCl_2 (0.3 mmol) and each ether (0.3 mmol) was determined in $CDCl_3$ (2.5 ml). b) Each chemical shift is indicated in the ppm value relative to the $Me_4^{119}Sn signal$. c) $\Delta\delta$ ppm = δ ppm ($Me_2^{119}SnCl_2$ + ether) - δ ppm ($Me_2^{119}SnCl_2$)

In the cases of *cus*-4-RO-thiane 1-oxides (**5a**-**c**), their RO-*ax* conformer preferences proved to be 45% (**5a**), 66% (**5b**), and 67% (**5c**), respectively, on the basis of their 400 MHz ¹H nmr analyses at -80 °C. Each RO-*ax* conformer preference extent of the thiane 1-oxides **5a**-**c** should be evidently larger than that of the corresponding thianes (**4a**-**c**) exhibiting the same order aspect **5c**>**5b**>**5a** as **4c**>**4b**>**4a**. In the cases of *trans*-4-RO-thiane 1-oxides (**6a**-**c**) and 1,1-dioxides (**7a**-**c**), the extreme 4-RO-*ax* conformer preference extent of 4-benzyloxy derivatives (**6a** and **7a**) seemes to be little lower than that of the corresponding 4-siloxy ones (**6b,c** and **7b,c**). Tentative ¹H nmr (200 MHz, CDCl₃, room temperature) analyses of 4-RO-dihydrothines (**8a.c**) and 1,1-dioxide of **8c** provided the fairly small W values [18.3 Hz (**8a**), 19.7 Hz (**8c**), and 18.6 Hz (1,1-dioxide of **8c**)] due to their 4-H peaks, which should mean their 4-RO-*pseudoax* conformer preferences as we anticipated.⁸ The dynamic ¹H nmr analysis of **8c** at -95 °C definitly clarified its conformational ratio.

422

Finally, crystalline compounds (**6c** and **7c**) were submitted to the X-ray analysis ⁹ Perspective views of their crystallographic structures are depicted in Figure 2⁹ The thiane 1-oxide and 1,1-dioxide rings adopt a chair form and the siloxy group, in fact, occupies the ax site in their molecules.

Figure 2. Perspectives view of the crystallographic structures of compounds 6c and 7c.

REFERENCES AND NOTES

- 1. Y. Nagao, M. Goto, M. Ochiai, and M. Shiro, Chem. Lett., 1990, 1503.
- Y. Nagao, Y. Hagiwara, Y. Hasegawa, M. Ochiai, T. Inoue, M. Shiro, and E. Fujita, *Chem. Lett.*, 1988, 381; S. Hanessian, D. Delorme, S. Beaudoin, and Y. Leblanc, J. Am. Chem. Soc., 1984, 106, 5754; S. E. Denmark and C. -T. Chen, J. Am. Chem. Soc., 1992, 114, 10674; D. Sato, H. Kawasaki, I. Shimada, Y. Arata, K. Okamura, T. Date and K. Koga, J. Am. Chem. Soc., 1992, 114, 761.
- 3. J. C. Martin and J. J. Ubel, J. Am. Chem. Soc., 1964, 86, 2936.
- M. Oki and N. Nogami, The 32nd National Meeting of the Chemical Society of Japan, Tokyo, April 1975, Abstr., p. 1087; N. Nogami, S. Sato, M. Oki, and Y. Saito, The 36th National Meeting of the Chemical Society of Japan, Higashi Osaka, April 1977, Abstr., p. 592.
- 5. Reduction of commercially available 4-ketothiane with LiAlH4 in Et2O followed by conventional benzylation or silylation employing each corresponding halide gave 4-benzyloxy- or 4-siloxythianes (4a-d) in a good yield, respectively. Their *cis* and *trans*-thiane 1-oxides (5a-c and 6a-c) and thiane 1,1-dioxides (7a-c) were prepared by oxidation with 1 or 2 mol equiv of *m*-chloroperoxybenzoic acid in CH₂Cl₂. Chromatographic separation of the resultant mixture of *cis* and *trans*-thiane 1-oxides on a silica gel plate

gave each pure isomer. Assignment of the cis or trans structure should be done by their ¹H nmr (200 MHz, CDCl3, room temperature) analyses [W(4-H) = 24.3-25.6 Hz for the *cis*-isomers or W(4-H) = 18.5 - 21.0 Hz for the *trans*-ones; The 3-H peaks of the *cis*-isomers are recognized in the higher magnetic field than those of the corresponding *trans*-ones.] in comparison with the same analyses of the authentic *trans*-(6c) and *cis*-(5c).

- 6. 4-Benzyloxy- and 4-siloxydihydrothimes (8a,c) were readily prepared by refluxing a mixture of the corresponding *cis* and *trans*-thiane 1-oxides with Ac₂O in benzene.
- B. Sternbach and A. G. MacDiarmid, J. Am. Chem. Soc., 1961, 83, 3384; R. West, L. S. Wilson, and D. L. Powell, J. Organomet. Chem., 1979, 178, 5; S. Shambayati, J. F. Blake, S. G. Wierschke, W. L. Jorgensen, and S. L. Schreiber, J. Am. Chem. Soc., 1990, 112, 697; Y. Nagao, M. Goto, and M. Ochiai, Chem. Lett., 1990, 1507; K. Maruoka, J. Sato, and H. Yamamoto, J. Am. Chem. Soc., 1991, 113, 5449.
- A. Qúedraogo, M. T. P. Viet, J. K. Saunders, and J. Lessard, *Can. J. Chem.*, 1987, 65, 1761; S. E.
 Denmark, M. S. Dappen, N. L. Sear, and R. T. Jacobs, *J. Am. Chem. Soc.*, 1990, 112, 3466
- 9. The crystallographic data of compounds **6c** and **7c** are as follows **6c**; C₂₁H₂₈O₂SSi, M = 372.60, triclinic, P1(#2), a = 10 240(1)Å, b = 12 003(3)Å, c = 9.991(2)Å, $\alpha \approx 111 44(2)^{\circ}$, $\beta = 107.04(1)^{\circ}$, $\gamma = 101 32(1)^{\circ}$, V = 1027.2(4)Å³, z = 2, Deale = 1 205 g/cm³, R = 0 066, **7c**; C₂₁H₂₈O₃SS₁, M = 388.597, tetragonal, P4 2/n, a = 20.316 (3)Å, c = 10.302(2)Å, V = 4252(1)Å³, z = 8, Deale = 1 214 g/cm³, R = 0.066.

Received, 17th November, 1994